Τα μαθηματικά και η φιλοσοφία γεννήθηκαν στην αρχαία Ελλάδα, ως
αποτέλεσμα της αγάπης των αρχαίων Ελλήνων στην ακριβολόγηση και την
απόδειξη.
Μια ιστορική επομένως ανασκόπηση της φιλοσοφίας των μαθηματικών είναι φυσιολογικό να αρχίζει από εκεί. Σύμφωνα με τον Thomas Kuhn για να κατανοήσουμε…
...Τα μαθηματικά και η φιλοσοφία γεννήθηκαν στην αρχαία Ελλάδα, ως αποτέλεσμα της αγάπης των αρχαίων ελλήνων στην ακριβολόγηση και την απόδειξη. Μια ιστορική επομένως ανασκόπηση της φιλοσοφίας των μαθηματικών είναι φυσιολογικό να αρχίζει από εκεί. Σύμφωνα με τον Thomas Kuhn για να κατανοήσουμε παλαιότερες εργασίες οφείλουμε να ξεχάσουμε την τρέχουσα επιστήμη και να εμβαπτισθούμε στην ανατραπείσα θεωρία.
Ένας όμως σύγχρονος μαθηματικός δεν χρειάζεται να αναδιοργανώσει τη σκέψη του για να μελετήσει τα Στοιχεία του Ευκλείδη, τα οποία μοιάζουν με τις σύγχρονες εργασίες. Σήμερα είναι παραδεκτό πως τα Στοιχεία είναι το αποτέλεσμα μιας διαδικασίας που ξεκίνησε κατά τη διάρκεια της ζωής του Πλάτωνα.
Ο Κόσμος του Είναι
Πρόκειται για μια σύντομη περιγραφή της θεωρίας των Ιδεών του Πλάτωνα. Έχουμε πχ εικόνες του ωραίου παρόλα αυτά τίποτα δεν είναι απολύτως ωραίο. Ο υλικός κόσμος έχει ψεγάδια. Υπάρχει όμως ο κόσμος των Μορφών (Ιδεών), αιώνιος και αναλλοίωτος στον οποίο υπάρχει η «όντως Ομορφιά», η «Όντως Δικαιοσύνη» κλπ. Οι ιδέες είναι οντολογικά υπαρκτές όχι νοητικά κατασκευάσματα. Έτσι ο Πλάτων δεν θα συμφωνούσε με την άποψη ότι η ομορφιά ή δικαιοσύνη κλπ βρίσκονται στο τρόπο που βλέπει κανείς τα πράγματα. Ο φυσικός κόσμος ονομάζεται κόσμος του γίγνεσθαι γιατί υπόκειται σε αλλαγή και στη φθορά, κατανοείται δε με τις αισθήσεις.
Πώς κατά τον Πλάτωνα αντιλαμβανόμαστε τις Μορφές, δηλ. ποια είναι η επιστημολογία του; Τις αντιλαμβανόμαστε μέσω της νόησης. Στον έργο του «Μένων», ο Πλάτωνας υποστηρίζει ότι η «μάθηση» στην πραγματικότητα είναι ανάμνηση από τη ζωή της ψυχής στον κόσμο της Αληθείας, πριν εισέλθει στο σώμα. Τα μαθηματικά κατά τον Πλάτωνα είναι ένα μέσο για να εξυψωθεί το πνεύμα πέρα από τον υλικό κόσμο στον αιώνιο κόσμο του Είναι.
Ο Πλάτωνας για τα Μαθηματικά
Η γεωμετρία αποτελεί κατά τον Πλάτωνα ένα παράδειγμα του κόσμου των Ιδεών και της σχέσης του με τον φυσικό κόσμο. Ο τελευταίος δεν περιέχει τέλειους κύκλους ευθείες ή σημεία, σε αντίθεση με τον πρώτο. Τα γεωμετρικά αντικείμενα ως αιώνια και αναλλοίωτα δεν υπάρχουν στον φυσικό κόσμο. Τοιουτοτρόπως τα θεωρήματα της γεωμετρίας είναι αντικειμενικά αληθή ανεξάρτητα από τον νου την γλώσσα, ή άλλα χαρακτηριστικά του μαθηματικού. Πρόκειται για ένα ρεαλισμό ως προς την τιμή αληθείας, που φθάνει μέχρι τον ρεαλισμό στην οντολογία. Η ιεράρχηση στην οντολογία του Πλάτωνα φαίνεται στο σχήμα. Η γεωμετρική γνώση αποκτάται με καθαρή σκέψη, ή με ανάμνηση της ψυχής από την ύπαρξή της στον κόσμο του Είναι πριν εισέλθει στο σώμα.
Η δυναμική γλώσσα στη γεωμετρία (πχ κατασκευές) έφερε σε δύσκολη θέση πολλούς από την Ακαδημία του Πλάτωνα, αφού δεν συμβιβάζεται με το αναλλοίωτο και αιώνιο των γεωμετρικών αντικειμένων. Το γεωμετρικό σχήμα κατά τον Πλάτωνα βοηθά τον νου να συλλάβει τον αιώνιο και αναλλοίωτο κόσμο της γεωμετρίας, πως γίνεται όμως αυτό αφού ο κόσμος του Είναι είναι προσεγγίσιμος μόνο μέσω του νου και όχι των αισθήσεων. Οι συνεχιστές των θεωριών του Πλάτωνα, αν και εγκατέλειψαν κάποιες μυστικιστικές απόψεις του σχετικά με την επιστημολογία, διατήρησαν την άποψη ότι η γεωμετρική γνώση είναι a priori, ανεξάρτητη από την αισθητηριακή εμπειρία. Ένα εγειρόμενο ερώτημα που ζητά απάντηση είναι το πώς η γεωμετρία έχει εφαρμογές στο φυσικό κόσμο. Τις ίδιες απόψεις του ρεαλισμού ως προς την τιμή αληθείας, και ως προς την οντολογία έχει ο Πλάτων και για την αριθμητική και την άλγεβρα. Ισχύουν προσεγγιστικά στο φυσικό κόσμο, ενώ ισχύουν ακριβώς και αυστηρώς στον κόσμο τουΕίναι.
Η θεωρία των αριθμών στη αρχαία Ελλάδα ονομάζετο αριθμητική, ενώ η πρακτική αριθμητική λογιστική. Και η λογιστική και η αριθμητική κατά τον Πλάτωνα ανήκουν στον κόσμο των Ιδεών. Η αριθμητική ασχολείται με τους φυσικούς αριθμούς και η λογιστική ασχολείται με την σχέση μεταξύ των αριθμών. Και οι δύο βοηθούν το πνεύμα να συλλάβει τη φύση του αριθμού καθεαυτή.
Ο Σωκράτης για τα Μαθηματικά
Ο Πλάτωνας θαύμαζε τα επιτεύγματα των μαθηματικών. Δεν ήταν όμως ίδια η στάση του Σωκράτη. Ο Σωκράτηςενδιαφερόταν για την πολιτική και ηθική και όχι για την επιστήμη. Συζητούσε με τον καθένα που ήθελε και αυτό το έπραττε σε καθημερινή βάση. Στη συζήτηση προχωρούσε προσεκτικά, εκμαιεύοντας το πιστεύω του συνομιλητή του και κατόπιν προχωρούσε σε απροσδόκητες και ανεπιθύμητες συνέπειες αυτού του πιστεύω. Η όλη συζήτηση βοηθούσε στο ξεκαθάρισμα των αντιλήψεων. Αντίθετα ο ώριμος Πλάτων, ενδιαφέρεται για τα μαθηματικά και διατείνεται ότι είναι το πρώτο πράγμα που πρέπει να μάθει κάποιος, αφού είναι χρήσιμα σε όλες τις τέχνες αλλά και σε κάθε μορφή γνώσης και διανοητικής λειτουργίας. Υποστήριζε ότι με τα μαθηματικά μπορούσε να περάσει κάποιος την πύλη που οδηγεί στο όντως Είναι. Με τα μαθηματικά οι άρχοντες θα περάσουν από τον κόσμο του γίγνεσθαι στον κόσμο του Είναι. Για αυτό συνιστούσε πολύχρονη μελέτη των μαθηματικών, των οποίων η γνώση προϋποτίθετο για την ενασχόληση με την φιλοσοφία.
Ο Πλάτωνας δεν πιστεύει ότι η φιλοσοφία είναι για τον οποιονδήποτε. Στην ιδανική του πολιτεία, ελάχιστοι συμμετέχουν στον φιλοσοφικό στοχασμό, ενώ η συντριπτική πλειοψηφία παίρνει τις οδηγίες από αυτούς κοιτώντας την δουλειά της. Έφθανε στο σημείο να υποστηρίξει ότι η φιλοσοφία είναι ακόμη και επικίνδυνη για τις μάζες. Τα μαθηματικά προχωρούν με την μέθοδο της αποδείξεως, ενώ η Σωκρατική μεθοδολογία προχωρά με την μέθοδο της δοκιμής και του λάθους. Έτσι προϊόντος του χρόνου η μέθοδος του Σωκράτη εγκαταλείπεται από τον Πλάτωνα, ο οποίος θέλγεται από την χωρίς περιπλοκές μαθηματική μεθοδολογία την οποία θέλει να εφαρμόσει σε όλη την γνώση. Μετά τις σπουδές στα μαθηματικά και την φιλοσοφία κάποιοι θα συναντήσουν και κατανοήσουν τις Μορφές, ανεξάρτητα από παραδείγματα του υλικού κόσμου, φθάνοντας σε μη υποθετικές πρώτες αρχές.
https://arxaia-ellinika.blogspot.gr/2017/02/platon-sokratis-mathimatika-geometria.html
https://www.olympia.gr/1579868/viral/platon-kai-sokratis-gia-ta-mathimatika-kai-tin-geometria-8/
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου